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•,L•.AI4Ity C ASIVICATIQN OF THIS PAOE06hun Plata rnmteErl)

20. Smary. his paper introduces a class of 1 player games of perfect

information, which we call "co Moening Qgaes; the player is allowed

moves which complc'ment the value, of successive plays. A complementing

Sgame is eyrntric' if all noncompl:ment moves arn revcersible (i.e., form a

symmetric reiation). These games are naturally related to a class of

machines we call s8yttet-ri comple•enting mach•.*8q. Symmetric nondeterministic

machines were studied in (Lewis and Papadlmittiou, 801; they are identical to

our symmetric complementing machines with complement moves allowed only on

termination. (A companion papur to appear will de2scribe the computational

complexity of symmetric complementing and alternating machines.) Of

particular interest is the complexity class(CSYMLOG, which contains the

outcome problem of symmetric complementing games with constant

complement bound withgame positions encoded in log space, and next move

relations computable in log space. We show that the decision problem for

a restricted quantified Boolean logic -ABMis complete in ijCSYMLOG.

We also show that iSYMLOG contains many well-known and common combina-

torial problems:

(1) minimum spanning forests.

(2) k-connectivity and k-connected components)

and also the recognition problems for many classes of graphs:

(3) planar graphs of valence 3'

(4) 'chordal graphs,-

(5) ccmparability graphs,',

(6) interval graphs

(7) split graphs

(8) permutation graphs.

(cont. on next page)
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20. Abstract (cont.)

We present a probabiZietio a-agorthm, (this is an algorithm which makes

•I probabilistic choices (Rabin, 741, but with no assumptions about the

probability distribution of the inputs) for recognizing the languages of
ECSYMLOG within space O(log(n)) and simultaneous time nO(l), with

error probability <E for any given E, 0 < C < 1. As a con-,tquence, problems;

(l)-(8) can be done probabilistically in space O(log(n)) and within

simultaneous polynomial time. The best previous known algorithms for

problems (1), (2) and (3) required deterministic space Mflog n) [Ja'JA'

and Simon, 79], and algorithms for problems (4)-(8) previously required

space Q(n).

Also, we give a probabilistic porakel aZlorithm (which employs the

Hardware Modification Machines of (Cook, 80], with probabilistic choice)

for recognizing the languages of ECSYMLOG within parallel time O(log n)

and error probability <E, for any given £, 0< C < 1. Thus we also have parallel

"time O(log n) algorithms for problems ()-(8). Our parallel algorithms

"seem practical since they require only a small polynomial number of

processors. The best previously known parallel algorithms for problems

(1)-(3) required parallel time f(log 2n) (Ja'Ja' and Simon, 80] and we

know of no previous parallel algorithms for problems (4)-(8). Furthermore,

we show (by a noncons;tructive technique) that for each input length n > 0,

the probabilistic choice can he eliminated in both our sequential and parallel

algorithins. This does not. affect the efficiency of the algorithms, but

makes our algorithms nontuniform (i.e., we have a'different algorithm for

each input length).

Sk../,.
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Summary. This paper introduces a class of 1 player games of perfect

information, which we call compZ377enting games; the player is allowed

moves which complement the value of successive plays. A complementing

game is ey'nriri if all noncomplement moves are reversible (i.e., form a

symmetric relation). These games are naturally related to a class of

Smachines we call sayreti'o complementing machines. Symmetric nondeterministic

machines were studied in [Lewis and Papadimitriou, 801; they are identical to

our symmetric complementing machines with complement mover allowed only on

termination. (A companion paper to appear will describe the computational

complexity of symmetric complementing and alternating machines.) Of

particular interest is the complexity class ZCSYMLOG, which contains the

outcome problem of symmetric complementing games with constant

complement bound with game positions encoded in log space, and next move

relations computable in log space. We show that the decision problem for

a restricted quantified Boolean logic ZQBF$ is complete in Z*CSYMLOG.

We also show that ECSYMLOG contains many well-known and common combina-

torial problems:

(1) minimum spanning forests

(2) k-connectivity and k-connected components iI
and also the recognition problems for many classes of graphs:

(3) planar graphs of valence 3

(4) chordal graphs

(5) comparability graphs

(6) interval graphs

(7) split graphs

(8) permutation graphs.

v_ _ _ _ _ _
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We present a probabilistio atgorlthm (this is an algorithm which makes

probabilistic choices (Rabin, 74], but with no assumptions about the

probability distribution of the inputs) for recognizing the languages of

ECSYMLOG within space O(log(n)) and simultaneous time nO(1), with

error probability <e for any given C, 0 < E < 1. As a consequence, problems

(1) -(8) can be done probabilistically in sDace O(log(n)) and within

simultaneous polynomial time. The best previous known alcgorithms for

problems (1), (2) and (3) required deterministic spac,* n(log 2n) [Ja'Ja'

and Simon, 791, and algorithms for problems (41.J•) previously required

space O(n).

Also, we give a pobabi•Zistic paralZeZ algorithm (which employs the

Hardware Modification Machines of (Cook, 801, with probabilistic choice)

for recognizing the languages of E*CSYMLOG within parallel time O(log n)

and error probability <c, for any given c, 0 < C < 1. Thus we also have parallel

time O(log n) algorithms for problems (l)-(8). Our parallel algorithms

seem practical since they require only a small polynomial number of

processors. The best previously known parallel algorithms for problems

(l)-(3) required parallel time n(log 2n) lJa'Ja' and Simon, 80) and we

know of no previous parallel algorithms for probltma (4)-(8). Furthermore,

we show (by a nonconstructive technique) that for each input length nsO,

the probabilistic choice can be eliminated in both our sequential and parallel

algorithms. This does not affect the efficiency of the algorithms, but

makes our algorithms nonunifoxm (i.e., we have a different algorithm for

each input length).

311
-' .-. -- .- ~------------~
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1. INTRODUCTION

In the previous decade, considerable success has been made in the

design of time optimal sequential algorithms for many combinatorial problems

on graphs (such as spanning trees, k-connectivity for k- 1,2, and 3

[Hopcroft and Tarjan, 73bh and planarity testing (Hopcroft and Tarjan, 73a])

using the technique of depth-firat aearch. Also, breadth-first search has

been used for optimal algorithms for other graph problems. By applying

well-known simulation results (for example, iFortune and Wyllie, 781), we

can derive parallel space optimal algorithms from these sequential time

optimal algorithms. Also, parallel time has been related to sequential

space (by the simulation results of (Fortune and Wyllie,. 78] and [Dymond

and Cook, 801, for example). It is intriguing therefore to ask:

Ui) Is there a general graph search technique which yields optimal

sequential space algorithms and (either by simulation results or directly)

also yields optimal parallel time algorithms?

We require that these algorithms be reasonabZe: that a sequential

algorithm with space bound S (n) uses no mcre than 20(S(n)) sequential

time (note that if S(n)-O(log n) then n sequential time will be used)

and that a parallel algorithm with time bound T(n) use no more than

20(T(n)) processors (again, note that T(n) mO(log n) implies n0(1)

processors will be used). (Note that certain probabilistic TMs have a time

bound doubly exponential in these space bound and are there for not reasonable).

The depth-fir!-t search and breadth first search techniques appear not

to be applicable to (i), due to their sequential nature. Another possible

technique for solving a graph problem is to efficiently reduce the problem

to boolean transitive closure, for which there is a known 11(log 2n)

parallel time algorithm [Csanky, 761. [Ja'Ja' and Simon, 80] apply this
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technique to do planarity testing and to solve connectivity problem in

0(log 2n) parallel time. (However, boolean transitive closure has no known

algorithm with less than P(log 2n) parallel time bound, and this bc.und

seems very difficult to improve, whereas we show here the planarity testing and

connectivity problems actually have O(logn) probabilistic parallel time algorithms.)

A related problem ini

(ii) Is there a logic, in which a significant class of combinatorial

problems may be succinctly expressed, and such that validity of sentences in

tha logic may be decided efficiently or even optimally? (with respect to

sequential space or parallel time)

A logic satisfying the conditions of (ii) could be used as the kernel

of a language for parallel programming, where programs may be "compiled"

into time optimal code for parallel machines.

This paper proposes solutions to (i) and (ii). A space efficient

sequential probabiZistic 8earch technique was first introduced by

[Aleliunas, Karp, Lipton, Lcvisz, and Rackoff, 79] to test 1-connectivity.

We generalize the probabilistic search technique to yield optimal

algorithms (in sequential space and also parallel time) for the complexity

class ZCSYMLOG, which contains a large class of many important combina-

torial problems. Fu-thermore, we propose a restricted quantified boolean

logic EQBFS as a solution to (ii).

This paper is organized as follows:

Section 2 defines complementing games and machines, complexity

notation. Section 3 provides a sequential decision algorithm for the

problems of ECSYMLOG, which runs in probabilistic space O(log n), and

can be modified to run in nonuniform deterministic space O(log n).

~ _ _~ r~--w-.- -
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Section 4 gives a probabilistic parallel algorithm which can simulate any

sequential space S(n) bounded probabilistic computation withinl parallel

time O(S(n)). We also show in Section 4 that we can eliminate probabilistic

choices in our parallel algorithm, without degrading its running time, but

introducing nonuniformity. Section 5 introduces our logic E*QBFS and

shows its invalidity problem is complete in E CSYMLOG. We also show in

Section 5 that various combinatorial problems (including minimum spanning

trees, k-connectivity and graph recognition problems such as valence 3 planarity

testing) are in ECSYMLOG.

2. PRELIMINARY DEFINITIONS

2.1 Symmetric Relations

Let RaD x D be a relation on domain D. Let its inverse be

R--{(b,a) IaR b}. R is eyntrmetrio if R-R-. R is deteministio if for

all a ED there is at most one bE D such that aRb.

2.2 Complementing Games

A (1 player) ccmpZementing gcme consists of a quadruple G- (P,W,-,- )

where:

(i) P is the set of positions, P is assumed to be a set of

strings over a finite alphabet.

(ii) WCP are the winning positions,

(iii) Ccpxp is the next moVe reZation, and

(iv) i-c_- are the oopZement movea.

c~
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Fix an .nvitiat position pOEP. A moVe is a pair (pP') EC. The

move (p,p') is an intitia move (termination move, oomplemont move)

"if p Po (if p' has no next move, and (p,p')C 1,, respectively). We

assume there is no next move from any winning position.

Let complement game G be symmetrio if - a a I- i is a symmetric

relation (see 2.1). Let I- be tog apoce if there is a deterministic log space next

move trana•duer which given any p E P, outputs (p' IPIz P'}

Let a pLay be a maximal length sequence of positions p0 ,p1 ,...

where P. is the initial position, and pi-l I pi for i-1,2,... (we allow

a trivial play p0 ). For any finite k;)0, let p0 have complement bound

k if any play from p0 has <k complements ignoring the initial move (ignoring

the initial move allows us to maintain the duality between Ek and Tkv

Suppose p0 has finite complement bound k. Let OUTCOME(p 0 ) -true

if there exists a finite play prefix p0 ,Pl*...*,pj j>0, with no complement moves

and where either pj E W or there exists at least one complement move from

pj and OUTCOME(p') =false for each complement move (Pj'P') IEc Otherwise

OUTCOME(p 0 ) = false. The outcome problem for G is given any pCP, next

move transducer for I, and a recognizer for W, compute OUTCN4E(p).

2.2 Machine Definitions*

Let a compZementing (Turing) machine be a 9-tuple x- (Er,b,tQ~q0.QSA,6,6c)

where

*See note at end of this paper on previous and equivalent machine

definitions for symmetric alternating machines.
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r is the finite input alphabet

r is the finite tape alphabet, with Zcr

bE r is the distinguished blank 8yrnboZ,

t is the number of tapes where tape 1 is the input tape

Q is the finite state set

q 0 Q is the in'tial state0!

QAE Q are the dcf-pting states

6c( 2( X etr ht)( 2 t-1 26£ ( X (z2 x {lef t, iht}) x (Z x {left,right})t) is the
t2ansition relation

6 c 6 are the complement transitions.
c-

6 has a slightly nonstandard definition so that we can syntactically define

symmetric machines in a manner similar to [Lewis and Papadimitriou, 80].

Suppose transition ((q,alblm1 ,... atbtmt)., (q'E,aSbjmj,..,a~b~mý) 6 is

taken. Then the previous state was q and the new state is q'. Each

tape iE{l,...,t} moves its head one cell in direction m!, and m. is

the reverse of direction m!. if m!= right then previously the head of

tape i was scanning symbol a. and "peeking" at symbol b. located one

cell to the right; in the new configuration these symbols a.b. replaced by
i i

symbols a!b! and the head is scanning symbol b'. The case m!'- left is2.1 1 1 -

similar, except the head was previously scanning over symbol b. while

"peeking" at symbol a. located one cell to the left; afterwards the head

is scanning symbol a!. We assume there is no transition from an accepting''

state. Let M be symmetrio if noncomplement transitions 6 = -s c

are a symmetric relation. Let J be the configurations of M, defined in

the usual way for Turing machines. We may extend 6 in the usual way to

the next movwi reZation I- c Ox.x Let I- C:- be the next moves which are

cr,.iplements. Note that if M is symmetric then the relation Is = -"-
SC



is symmetric. Let Wca be the accepting configurations. GM- (,9,W-,-,c)

is the computation comptementing game of M.

Given an input string wE En, we let the initial configuration I 0 ( )

be the initial position of GM. Computation sequences of M are plays of

GM from I (0). Suppose M has a finite complement bound from I (W).

M accepts w if OUTCOME(I 0 (M))- true. If M has only complement moves
00

which are terminations, than M is a nondeterm7iniati machine; furthermore,

if Is is symmetric than M is a eymetric nondeterminis tic machine as

defined by (Lewis and Papadimitriou, 80]. Let L(M)= {WE E*IM accepts Wi.

2.3 Complexity Classes

Let complementing machine M have apace bound s(n) (complement

bound K(n)) if on any input of length n) 0, each computation sequence

has no more than S(n) nonblank cells on any work tape in each configuration

(less than K(n) complements on any computation sequence ignoring the

initial moves).

Note that nondeterministic and co-nondeterministic machines have complement

bound 1 (see 2.2) . -For notational simplicity, we define a complementing' machine with

complement bound 0 to be a deterministic TM. Let .f4 be a class of

complementing machines. Let .A/SPACE(S (n)) be the languages accepted by

those machines in /tI with space bound S(n). Let F[,#SPACE(S(n))

(•k J(SPACE(S(n))) be the languages accepted by those machines in .# with

space bound S(n), complement bound k and no complement Noves (only

complement moves, respectively) for the initial moves. Let

ES; PACE(S(n)) U Y SPACE(SW); that is the machines operate in some

constant number of complements, ina,.pendent of the input length.

t .. . ..Ijm 7. ............ o



In the context of complexity classes, we let D denote the class of

deterministic TMs, let N denote the nondeterministic TMs, and let NSYM

be the symmetric nondeterministic machines. Let C b. the complementing

machines and let CSYM be the symmetric complementing machines. For

example, the complexity class NSYMSPACE(S(n)) =LIL is accepted by a

symmetric nondeterministic machine with space S(n)) previously investigated

by [Lewis and Papadimitriou, 801. The complexity class EK(n)CSYMSPACE(S(p)) =

{LIL is accepted by a symmetric complementing machine with space bound

S(n), complement bound K(n), and no complement initial moves) is of central

importance to this paper. For notational simplicity, let NSYMLOG =

NSYMSPACE (log (n)), and CSYM4LOG= CSYMSPACE (log (n)).

Let L log L2 denote that language L1 can be many-one reduced in

deterministic log-space to language L2' Let L1 be <log equivalent to

L2 if L1 4log L2 and L2 4log LI" Let L2 be ompZete in a family of

languages 9 if L2 E ' and L1 <log L2 for each L1 E'. Note that if S(n) > log n,

SL1og L2 and L E CSYMSPACE (S (n)), then L E CSYMSPACE (S (n)), by Proposition 2.3.1 log 2 2 1

2.4 Preliminary Results for Symmetric Complementing Machines

It follows immediately from our definition of complementing machines

that:

PROPOSITION 2.1. For any LEC*, LE K(n) CSYMSPACE(S(n)) iff

E*.- LElK CSYMSPACE(S(n)).
* . IC(n)

Since any complementing machine has a finite tape alphabet, it is easy

to show

PROPOSITION 2.2. If complementing machine M has space bound

S(n))'log n, then M has complement bound 2 0(s(n))
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[Lewis and Papadimitriou, 80) show DSPACE(S(n))C NSYMSPACE(S(n)).

Also, since any symmetric complementing machi.ne is a complementing

marhine:

PROPOSITION 2.3. DSPACE(S(n)) C. K(n) CSYMSPACE(S(n)) ca K(n) CSPACE(S(n)).

(Note that space bounded complementing machines accept the same languages as

space bounded alternating machines and that complementing machines without space

bounds accept some not r.e. languages but that is not relevant to this paper.

Further properties of symmetric complementing Avid alternating machines will

appear in a companion paper, but are not required for the results of this

paper.)

3. A SPACE EFFICIENT DECISION ALGORITHM FOR SYMMETRIC COMPLEMENTING MACHINES

We give a O(S(n)K(n)) space sequential algorithm for recognizing the

languages of EK(r) CSYMSPAC7(S(n)). The algorithm is probabilistic (see

3.1 and 3.2), though we show it can be made deterministic by introducing

nonuniformity (see 3.3).

3.1 Probabilistic Seq4ential Machines

We define a probabilistic TM to be a multitape deterministic Turing

Machine PM with a special read-only, one-way tape (distinct from the input

and work tapes) containing an infinite binary sequence. The contents of

this. "random bitvector" tape are chosen randomly on each execution of PM.

Let Z be the input alphabet of PM and lot LC£'. For any E(n),

0 0(£(n) < 1 say PM recognizes L within error E(n) if for all wEn, n

r-A.
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Cl: W"'CL implies Prob(PM accepts w) >l- c(n).

C2: w RL implies Prob(PM accepts w) < E(n).

To justify this definition, we note that Adleman's [78] definition of

acceptance of probabilistic machines is similar to ours, except E(n) -1/2

in Cl and he strengthens condition C2 by requiring that wJL imply PM

does not accept w on any probabilistic choiie. Many probabilistic algo-

rithms in number theory satisfy this more restrictive property, but it is

too restrictive for many of the applications in this paper. On the other

hand, Gill [773 defines acceptance of probabilistic machines with the max of

the error of acceptance and rejection less than 1/2.

Note that a probabilistic machine may not be reasonabZe in the sense

defined in the introduction (since Gill [77] gives a probabilistic machine

with space bound S(n) and expected time bound 2 2 0(S(n))); however, the

probabilistic machine implementing the PROB-SEARCH algorithm of Section 3.2

will be reasonable.

3.2 Probabilistic Simulation of Space Bounded Symmetric Complementing

Machines

We shall show:

THEOREM 3.1. For any e(n), 0< £(n) <1, there is a probabilistic TM
which recognizes LE EnCSYMSPACE(S(n)) within given error C(n) and

K(n)

space 0(KCn)(S(n) +log d(n))) and time (d(n)20 S(n) )I)Kfl) where

d(n). .K(n) (O(S(a)) +log(O(K(n))) - log E(n).

Note that if £(n) is constant, then by Proposition 2.2, we require

space O(K(n)S(.n)) and time 20tK(n)S(n)). Thus:

I -.----- L
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COROLLARY 3.1. For each constant C, 0<C <1, and LEE* CSYMLOG,

there is a probabilistic TM which recognizes L within error E and

0(1)simultaneous space O(log n) and time n

Although Theorem 3.1 suffices for our applications, we also show its

space bounds can be improved.

THEOREM 3.2. For each LEEK(n) CSYMSPACE(S(n)), there is a probabi-

listic TM which recognizes L within error C(n) and space

O(K(n)(S(n)+ log(S(n)+log d(n)))).

Our probabilistic search technique will utilize the following result:

LEMMA 3.1. [Aleliunas, Karp, Lipton, Lovasz, and Rackoff, 79]. Let

G- (V,E) be any undirected, connected graph. Let r be a radom waZk in

G from any vertex vE V be constructed from trivial path v by repeatedly

extending the front end of r by adding a random edge of E which is

connected to the current front end vertex of r. Let r be a random walk

of length 21EI(IVI -1). Then Prob(r visits all vertices in V)>1/2.

[Lewis and Papadimitriou, 801 observe that this Lemma immediately

implies a space O(S(n)) probabilistic algorithm for NSYMSPACE(S(n)). A

generalized probabilistic search technique is used here to decide acceptance

of symmetric complementing machines.

We now prove here Theorems 3.1 and 3.2. Let M be a symmetric com-

p-].-rnenting machine a,- defined in Scction 2.2. We assume M has complement

bound K(n)> 1 and constructible space bound S(n)> log n (otherwise, we

use the standard technique of trying S (n) = log n, 1 + log n, . to the

- !

_l
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construction given below). Let 1 be the set of ;onfiguration of M and

let WCf be the accepting configurations. Let I- be the next move relation

of M. Let c, C s C I- be the complement and noncomplement moves of I,

respectively. Fix some n) 0. Let J1' c be the ccnfigurations which have

<S(n) nonblank cells on each work tape.

We define a recursive procedure which takes as input a configuration

I EA.' Also, the procedure has a global variable t (which determines

the procedure's probability of success>.

procedure PROB-SEARCHt(I)

begin

local integer i, set COMP
i÷-O

•while i<t do

b~egin

if I is accepting then return true

COMP+-{I'EeII ý- I'}

if COMP € then

if PROB-SEARCH(I')= false for all IIECOMP then
return true

choose a random I' from {I'E$'II J s I'}

14- 1'

i4+i+ 1

end

return false

end

For each k, l1k(K(n) let J¶c C ' be the configurations which also

have complement bound k.

Let Ck,t be the max probability that PROB-SEARCHt(I) -false for

any I CA such that OUTCOME(I)omtrue. Let E be the max probability
k k,t

7,_ _ _ _ _ _ _ _ _ _ _ _ _
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that PROB-SEARCH (1) -true for any I E 0 such that OUTCOME(I) -false.
t k

Thus, Ck,t and £k,t are the worst case error probabilities for

rejection and acceptance, respectively.

LTMMA 3.k. There Are constants b,c >1, dependent only on M, r.uch

that for any d>1, k>l,

max(Ck,tik,t) ) k2"d(tb)k-1

where t= 2dcS(n).

Proof. Let w's (1' x.o,) n fs" Since M is symmetric 'J',FI) is an

undirected graph. There exists a constant b)> upper bounding the

number of next configurations {I'II I - I' possible from any given

configuration I. Also there exists a constant c1 I1 such that

I'rl-<C In).Thus there exists a constant c2 ý0 such that Iýl-<c 2

Let c-=c 1 c2 so t;2dIO'l I -1.

For each pair of configurations I, I' .0 for which there is a non-
k

complementing computation sequence from I to I', by Lemma 3.1, we have
prob(r visits I') * 1- 2-d for a random walk r in (Jk' F) starting

k

at I and of length 2dl 0'I I,-SI.
Now we prove Lenma 3.2 by induction on k. For k=l we show

max(1,t,lt)2-d. The wotst case error probability for rejection and

acceptance from any I E.!l with no complement next move is 42-d and 0,

respectively. Thus the total worst case error probability for rejection and

acceptance from any I E.9 is 2-d and < 2-d , rospectively.

Since there at most tb direct calls to PROB-SEARCH during a single

execution of the body of the PROB-SEARCH procedure, for k > 1 we have:

4i
- -----------. '----------1
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-d -
2-d2 tbCk. and •'~ • tb~k,

Ck,t• k+ ~ t

By the induction hypothesis,

maxlC k-l,t, ik-l,t) (k-lp 2-d Ctb) k-2

Hence

max(Ek,,kt) < 2-d +tb. J
k~t-d k-i-

-d k-id k
2 -+ (k1)2 2-(tb)k'

Sk2-d 

(tb)k-1

Let L be the language accepted by M. Suppose we are given some

error function E(n), O< E(n)< 1. Let PM be the probabilistic TM which

on input wEEn, computes PROB-SEARCHt(n) (Io(0w)) and accepts iff tha
s(n)

result is true, provided that d(n) =K(n)log(t(n)b) - log e(n) and t(n) = 2d(n)c

(Note that both d(n) and t(n) are decreasing functions of e(n).)

By Lemma 3.2, PM recognizes L within error e <c(n). Furthermore,
X(n)

K"n)0(S( x(n
PM has time bound O(t(n)) = (d(n) 20(S (n))K(n). PM has space bound

O(K(n)(S(n) +log d(n))) since we must store b- 0() configurations

of size O(S(n)), and a "time counter" requiring space log t(n)-O(S(n)+

log d(n)), to implement each of the K(n) recursive cells. Thus we have

proved Theorem 3.1. 3

Although Theorem 3.1 is good enough for our applications to E, CSYMLOG,

it is nevertheless interesting to observe that we may decrease the space

bound by using a trick due to Gill [77]. To avoid storing the "time

counter" in the procedure PROB-SEARCHt, we inst'ad sample a random bit on

each iteration of the while statement. If at any time there have been

i
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log t consecutive r ,ro's chosen, then we immediately exit the while

statement. This test replaces the test (i Ct) in the original text of

PROB-SEARCH t. To achik-re error E (n) ICE(n), we must only increase i(n)

by a factor of 1/(1-log exp(l)). Only O(K(n)(S(n)+ loglog t(n))) a

O(K(n)(S(n) +log(S(n) +log d(n)))) space is required by this method (but

note that we no longer have a time bound . Thus we have proved

Theorem 3.2. o

3.3 Eliminating Probabilistic Choices

Let a nonunif•rm detý'.rniniotic TM be a deterministic TM augmented

with a special read-otily tape, called the adVice tape, whose contents are

fixed for all inputs of the same lergth n, but which may have different

cý,ntents for distinct input lengths n and n'. (Neither the input tape

nor the advice ',ape is considered in tne space bound of this machine.)

This nonuiniform machine has advice bound Atli) if on inputs of length n,

the advice tape inas A(n) cells (see [Karp and Lipton, 80]). We will

show:

THEOREM 1.3. Each LE 1, CSYMSPACE(S(n)) is accepted by a nonuni-

1" (40)

form deterministic TM within space bound O(X(n)S(n)), time bound

2 0(K(n)S(n)) and advice bound 2

COROLLARY 3.3. Each LE E, CSYMLOG is accepted by a nonuniform deter-
0(1)

miriistic TM withia simultaneous space bound O(Log n), time bound n

and advice botirl n0(1)

We now prove Theorem 3.3. P'e require a technical graph theoretic

result.

• • o _
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Let G- (V,E) be a undirected regular graph, with valence b. We

assume G has a fixed adjacency list representation, so for each vertex

v we have a list £(v) of vertices adjacent to v. Given a string

U {l,...,b1*, and a vertex v, let U(Gv) be the path v-Vo,...,v 17

such that vi is the U(i) element of list Z(vi_) for i- 2,..,IIl.

Let n be the class of all undirected, regular graphs with 14nn,b

vertices and valence b. Let UE {l,...,b)* be (n,b)-wiivereaZ if fori

each graph GEn and each vertex v of G, U(G,v) visits all the f
rnb

vertices of G.

LEMMA 3.3. (Aleliunas, Karp, Lipton, Lovasz, and Rackoff,791 For

each b ;1, there is a c(b) such that for each n)O there is a (nb).-

universal string Un,b of length 4c(b)n3 log n.

Let M be a symmetric complementing machine of Section 3.2 with

complement bound K(n) , and space bound S(n) . Let (%,I-') be the

undirected graph of valence b defined in the Proof of Lemma 3.2. Clearly we

can add redundant transitions so that (J', -) is regular with valence b. Let

NONUNIFORM-SEARCHt (1) be the deterministic procedure derived from PROB-SEARCHt (I)

of Section 3.2 by using the (16'.,b) -universalstring Uf,Ib in place of

probabilistic choice, for choosing the configurations to be explored in ('.,').

By the Proof of Lemua 3.2, there exists some c) I such that

cS~ I' c(n) . L.et tr (n -c(b)(S (n) log c)3S().Then Lemma 3.3

insediately implies

LEMMA 3.4. For each input string we z,

NONUNIFORM-SEARCHt (I 0(w)) M true iff M accepts W.

t n
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This procedure may be implemented by a nonuniform deterministic TN with

sparee bound O(K(n)S(n)), time bound t(n) X(n),gO(K(n)S(n)) and advice

bound t(n) - 20(S(n)). Thus we have proved Theorem 3.3. 0

4. A PARALLEL ALGORITHM

4.1 The Hardware Modification Machine

Our parallel machine model is the Hardware Modification Machine (HMM)

of [Dymond and Cook, 80] (through we consider probabilistic and nonuniform

variants of it below). The HMM was invented as the parallel analog of the

storage modification machine of [Schonhage, 79]. The HMM seems to be the

simplest possible parallel machine with modifiable storage structure, and

the HMM can be simulated within real time, with the same number of pro-

cessors, by many other such parallel machines, including the P-RAM of

(Fortune and Wyllie, 78] (this P-RAM model was assumed for the parallel

graph algorithms of iJa'Ja' and Simon, 80]), the PRAM of [Savitch and

Stimson, 791, and the SIMDAGs of [Goldschlager, 7)].

Intuitively, a HMM consists of a finite collection of deterministic

finiLC state machines which we call processor8. The state transition

function of these processors are identical. Each processor also contains

the same fixed, finite number of input and output connections for trans-

mission of values, from a finite alphahet, between processors. On

each step (the state transitions of the processors are synchronous) a

processor will read the values of its input connections which were set by

its neiqhboring processors on the last step, and write new values on each

of its output connections, (only one process is associated with each output

S!V

_____ -- ~-. ~
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connection), and enter a new state. In addition, a procesaor may reconnect

any input connection to any machine which can be reached by a path of

length Q2 from the previous input connection. Also, a processor may

reconnect an input connection to a new processor (with the same finite

state control, initialized in some given state and with input connections

directed to its creator). ]
Given an input string WE E-n, we assume the initiaZ oonfigu2ation of

the HMM consists of a chain of n+l idential processors PPoO PP1 ,".."PPn

each in the same initial state, and each with input connections connected

back to itself, except each PPi-l for O<iCn, has a distinguished input

connection to PPi where the value output by PPi is the i-th symbol of

the input string w. (This initialization scheme is somewhat simpler than

that defined by [Dymond and Cook, 80], but yields the same technical results

of interest here.) The 110 accepts w if PP0  ever enters a distinguished

accepting state qA"

The time bound T(n) (processor bound P(n)) of the H0 is the

maximum number of steps (processors, respectively) taker. on any accepting

computation for any input of length n. -enerally we assume the HMM is

uniform: the processors have the same finite state transition function for

all input strings. However, we consider in Section 4.4 nonuniform Emma

which must only have the same finite state transitions for all input strings

of the same length. The advice bound A(n) of a nonuniform 110 is the

number of tuples defining the processor state transition function for

input of length n.
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4.2 The Probabilistic HMm

In addition to the above of a uniform HMM, suppone we allow each

processor PPi prbabiostio choioe by providing a special read-only

register ri which is set randomly to 0 or 1 each step. Let PPM be the

resulting p'obabi1ietio HM4. PHN recognizes Zagwge LcE* within ear0

E(n), O<((n) <1, if for all . n

Cl: W E L implies Prob(PPM accepts w) ;0 1 - E (n)

C2: W0JL implies Prob{PPM accepts wl < E(n)

(Note that the conditions Cl, C2 for probabilistic recognition are identical

to those given in 3.1. [Reif, 81] gives complexity bounds ior various other

probabilistic parallel machines and for both the [Adleman, 78] and also the

[Gill, 771 definitions of probabilistic acceptancel if Adleman's definition

of acceptance is used, than we can eliminate probabilistic choice in our

parallel machines by introducing nonuniformity without any increase in

parallel time; on the other hand if Gill's definition of probabilistic

acceptance is used, then we show that probabilistic parallel space S(n)

contains parallel space S(n) with nondeterministic choice.)

4.3 Parallel Simulation of Probabilistic Sequential Computations

[Dymond, and Cook, 80] prove that

THEOREM 4.1. If LEDSPACE(S(n)) for S(n);log n, then L is

recognized by a (deterministic) HMM in simultaneous parallel time bound

O(S(n)) and processor bound 2 0(S(n))

We generalize their results to probabilistic computations.
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THEOREM 4.2. Let PM be a probabilistic TM with

space bound S(n)> logn and time bound T(n). Suppose for some E(n),

0< E(n) <1, LaT.* is recognized by PM within error r(n). Then there

is a probabilistic HMM which recognizes L within error e(n) and with

O(Sr(n) +log T(n)) parallel time and utilizes T(n)•2 0 (S(n)) processors.

Furthermore, this HMM is uniform.

Proof. Fix some input string wE Z.n and let 10 ( ) be the initial

configuration of PM. Let 9' be the configurations of PM: using <S(n)

tape cells. Clearly there exists a constant c>0 such that !J'I 4cS(n).

We assume S(n) and T(n), are constructible (otherwise we must in

parallel use a diagonalization of S(n) =0,1,..., and T(n)=0,i,...).

Our simulating probabilistic HMM, which we call PPM, will utilize a

processor PPIt for each t, 0 t <T(n) and I E.'. Thc-c prcc-c•-ors

can be created in binary tree fashion within O(log(T(n)I.' I)) time.

Each processor PPI't chooses a configuration I' randomly from those

allowed from configuration I by PM. PPI't then makes a distinguished

dump connection to processor PP1 ' , These connections can be made in

time O(log(IJ.' h)), again using binary trees for indexing. Thereafter,

each process PPI1 t repeatedly connects Its jump connection to that which

was its jump connection of distance 2 in the previous step. These steps

are executed synchronously by all the processes, and the HMM is allowed

to halt and accept only when process PP has a jump connection to

a process PI't where I is an accepting configuration of PM.

Suppose 10, II,... is an execution sequence of M, with particular

probabilistic choices r. Suppose also that the RAMs of PPM make

particular probabilistic choices r', such that PPit~ initially sets its
e .. ,

-7i
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jump connection to process PP t+l,t+l for t=0,l,...,T(n)-l. Then it is

easy to verify that PPM accepts W (when making probabilistic choices

r') iff PM accepts W (when making probabilistic choices r). Since r

and r' are chosen randomly, it follows that

Prob{PM accepts W1 = Prob{PPM accepts w)

Furthermore, if PPM ac,..epts w, then there is a path PP 1o,0,P, 1,...,

P induced by the initial jump connections such that I 0 () = 0 .
It't0

is an accepting computation of M, and t T(n). On each iteration, this

path's length decreases by a factor of 1/2. Thus, PPM accepts within

parallel time

O(log(T(n)[49'j)) = O(log(T(n) 2O(S(n)))) = O(S(n)+log T(n)) . 3

Combining Theorems 3.1 and 3.2, we have:

THEOREM 4.3. For any S(n)> log n, K(n)>I, and for each C(n),
O<e(n) <1 and LEE CSYMSPACE(S(n)), there is a probabilistic HMM

K (n)

which recognizes L within error e(n), with parallel time bound

O(K(n) (S(n) +log d(n))) and processor bound (d(n) 2 O(S(n)))K(n) where

d(n) is defined as in Theorem 3.1.

Note that if E(n) is constant, then HMM has parallel time bound

O(K(n)S(n)) and processor bound 20(K(n)S(n) . Thus:

COROLLARY 4.3. For each constant c, 0 < c < 1, and L EE*CSYMLOG,

there is a probabilistic IIMM which recognizes L within error F. and

with parallel time O(log n) and n0( 1 ) processor bound.
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4.4 A Nonuniform Parallel Algorithm

By Theorems 4.1 and 3.3., we can eliminate probabilistic choice in

our parallel algorithm, by introducing nonuniformity.

T¶HEOREM 4.4. For each LEEK CSYMSPACE(S(n)) with S(n)>log n,

K(fl)

L is accepted by a nonuniform HMM with parallel time bound O(K(n)S(n)),

processor bound 2 O(K(n)S(n) and advice bound 20(S(n))

COROLLARY 4.4. Each LE E*CSYIZ-OG is accepted by a nonuniform HMM

within simultaneous parallel time O(log n), processor bound n0(1) and
0(1)

advice bound n

5. COMPUTATIONAL PROBLEMSS IN -*CSY.M.OG

5.1 Symmetric Complementing Games

Let CSYMGAMES(S(n),K(n)) be the outcome problem for symmetric

complementing games with positions of plays (starting at an initial position

of size n) of length 4S(n) complement bound K(n), log space next move relation

and log space recognizer for winning positions. By our definition of complementing

machines, we have:

THEOREM 5.1. For S(n)> log n, CSYMGAMES(S(n),K(n)) is complete for

the languages accepted by symmetric complementing machines with space bound

S(n), and complement bound K(n).

COROLLARY 5.1. The outcome problems

U CSYMGAMES(log n,k) are complete for ECSYMLOG.

)C>0

it
- _______________ ~-
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5.2 QFS

Given a set X of boolean variables, let literals(X) =XU{,IxlxEX} U

(true,falsel. Let CNF@ be the set of boolean formulas consisting of a

conjunction of clauses, each clause consisting of the exclusive-or I a 11

of two literals 9,.'. Note that t V £' is equivalent to (-It) $ (.').

(Jones, Lien, and Laaser, 76] and [Lewis and Papadimitriou, 80] show

CNF$ unsatisfiability is complete in NSYMLOG. Let o0 QBF$ and

IQ0QBF@ be the truth values {true,false . Inductively, let EkQBF@

be the set of quantified boolean formulas F of the form (UX)C1A ... A C

where X is a set of boblean variables and each clause C. is of either1

form £k V or of the form kVF' whexe Z,V'Eliterals(X) and F' is

a formula of Hk_ QBFE. Also, let TlkQBFO be the set of quantified

boolean formulas F of the form (VX)C 3 v ... v C where each clause C.m 1

is of the form k ( k or of the form X AF' where k,k' E literals(X)

and formula F' must be in EkIQBFP. Let EQBFG = Uk:0 EkQBFE.

Note that all variables are bound in QBF@ formulas.

THEOREM 5.2. For all k> 0, the invalidity problem for •kQBFO is

kkcomplete in E kCSYMLOC, and the invalidity problem for ITk QBF(D is

complete in 1k CSYMLOG.

We prove here Theorem 5.2. Our proof requires a technical Lemma.

This Lemma is an easy generalization of a result of [Jones, Lien, and

Laaser, 76] which characterized decidability of CNF( formulas.

LEMMA 5.1. Let F be a formula of EkQBFE). F is invalid iff

there exists a sequence of literals 0,.,j such that Z( t.. 1'"''

k j-1 (- -j are equivalent to clauses of F and to or both (1) and

(2) hold.

44t
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(1) to =true or 0 V F' Iii ;t clause of F where F' is an invalid

formula in k.IQBF(.

(2) £. =false or -4 V F" is a clause of F where F" is an inv'l -d

formula in nk_,QBF@.

It will also be useful to note that

PROPOSITION 5.1. If F is a formula of 11kQBF@9, then IF is equi-

valent to a formula F of ZkQBF@, where P is formed by switching the

quantification symbols V,3 and also switching the logical connectives

V,A in F. So F is invalid iff F is valid.

Proof of Theorem 5.2 by induction on k. IToQBF@9 and E0QBF$ can

easily be shown complete in Ho CSYMLOG= E0CSYMLOG =DSPACE(log n).

Suppose for some k> 1 the Theorem holds for all k' < k. Let F be

a ZkQBFe formula of length n. To decide F, we play a symnetric com-

plementing game. Let the player begin by choosing a sequence of literals

top ... ,A such that 0j-1,...,tj i are equivalent to clauses of

F. Note that only the first literal and last literal need be stored, and

this requires O(log n) space. This choice sequence is reversible since

U iI -it ) E U i 9-It ) The player enters the accepting state (and thus

wins) if either -0 =,1.j on both cases (1), (2) of Lemma 5.2 holds. This

may require deciding formulas F', F" of 11 kQBFS . To do this, we allow

the player two simultaneous complement moves from the current position. In

these complement moves, we let the player test if both F' and F" are

invalid. By the induction hypothesis, these tests are in k-1 CSYMLOG.

Thus the symmetric complementing game can be implemented by a symmetric

complementing machine with complement bound k and space bound O(log 0).

By Lemma 5.2, the player wins iff F is invalid. We have thus shown that

ZkQBF$ invalidity is in ZkCSYMLOG.
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Now let M be a syvnetric complementing machine with complement

bound k and space bound log n. Let t- be the noncomplement moves

of4 M. For each k', l1k'4 k, let J., be the set of configurations

of M with C log n nonblank cells per work tape and for which there

is a complement bound of k'. Let Tk' be the configurations of

J0k' which have a complement as a next move. By the induction

hypothesis we can assume for each IEW 1 a formula F'(I) of

llklQBFS such that F'(I) is invalid if f OUTCOME(I') =false for each

complement move (I,I') from I.

For each I E. we assume a distinct variable x1 . Let
k

X - {x IIIcJ}. Let W' be configurations of M which are accepting andI k

have <log n nonblank cells per work tape. For each IE W', let gI

be the formula x1 1 true. Thus gI is true iff xIn false. For

each I Ek-l let gI be the formula (ix )v F' (I). For each I EJ
I- I k

and JEW' Ukl let f (true 0 Ix) A ) •xi2) 1 g
adk-l' , P,,~k,2 xl 1, 2)A

where I- =- 1s (nwX4k). Thus (3X)f is invalid iff there
exists a computation sequence Il ... ,Ij such that I,=I, I j=

and OUTCOME(J) = true.

Now for each IEJk and JEW' U9 let x be a new distinct
k k-l

variable, and let f ,j be derived from f I, by substitut4.ng xJ,

for each instance of variable xil for each I'E . . Let

X' = {XJIIEk and JEW UTe } For each IE.&, let
I k k-l k

Ff(I) ='X) A f Clearly F(I) is in EkQBFP( andF(1EW IB' U1 K, I• l Ik

furthermore, F(I) is invalid iff OUTCOME(I)= true. Hence F(I ((d))

is invalid iff M accepts w.

SrI717
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We have thus shown that the invalidity problem for EkQBF( is

complete in E CSYMLOG. By Propositions 5.1 and 2.1, the invalidity

problem for UkQBF9 is complete in IT kCSYMLOG. 0

5.3 k-Connectivity

Given a graph G= (V,E) and vertices u,vE v, let k-PATHS(Gu,v)

be the problem: are there k vertex disjoint paths from u to v? The

problem 1-PATHS is commonly called the UGAP problem.

THEOREM 5.3. UGAP is complete in NSYMLOG.

Proof [Lewis and Papadimitriou, 801. Given an undirected graph G

of n vertices with distinguished vertices uv, we nondeterministically

traverse a path in G from u, and accept if the vertex v is reached.

This can easily be done by a nondeterministic machine in space O(log n)

to store the currently visited vertex. But this nondeterministic machine

can be made symmetric since any edge can be traversed in both directions.

On the other hand, suppose M is a nondeterministic symmetric

machine with log n space boundly and input string wE ZE. Let .0 be

the configurations of M, with space 4logn, let s xf0 be the

nondeterministic moves of M, and let WCJ be the accepting configurations.

We construct a undirected graph with vertices V- UU {If} where

IfI iJ, and edges E= {{II'}II t-I'} U {{IIf}II-I' fo: sorie V( w}.

Then M accepts W iff there is a path in (V,E) from I(w) to I f'

By Theorems 2.1 and 5.3,

COROLLARY 5.3. The complement of the UGAP problem is complete in

IT 1CSYMLOG.

I -s. o-.



-28-

THEOREM 5.4. For each k)l1, k-PATHS is complete in NSYMLOG.

We also show that for each k > 0, the k-connected components recognition

problem for an undirected graph is in NSYMLOG.

By Menger's Theorem [Bondy and Murty, 77], for any graph G = (V,E) and

vertices u, vEV, k-PATHS(G,u,v) 4-*(Vxl,...,xk 1 EV- {u,v))UGAP(GI,u,v)

where G' is derived from G by deleting vertices xl,1.01Xkl and all

edges connected to these vertices. Thus we have a deterministic log space

reduction to UGAP, which by Theorem 5.3 is in NSYMLOG. Theorem 5.4

is thus proved.

Let a graph G = (V,E) be k-connected if for all distinct vertices

u. v EV, there exists k vertex disjoint paths from u to v. We define

a k-connected component of G to be a maximal k-connected subgraph of G.

(Note: to facilitate planarity testing, [McLane, 37] and others define

"tri-connected" components somewhat differently. However McLane's components

are homeomorphic (i.e., derived by replacing paths, with internal vertices

of 'alence 2, by edges) to the 3-connected components of our definition.)

By Menger's Theorem, any two k-connected components intersect at no

more than k-l vertices. Thus some k vertices suffice to uniquely deter-

mine any k-connected component of G. Let k -CC(G,x; {v, ... ,vk ) be the

problem: is vertex x in the k-connected component of G determined by

COROLLARY 5.4. k - CC is complete in NSYMLOG.

Proof. By Menger's Theorem,

k-CC(Gx,(vVl, ... ,Vk) I- A k-PATHS(G,x,vi)

Thus we may apply Theorem 5.4 a

C,-- *- -~ -- ,-- - -

S. I
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5.4 Minimum Spanning Forests

Here we show the ICSYMLOG contains the problem of recognizing an

edge of a (unique) minimum spanning forest.

Let G - (V,E) be an undirected graph with a mapping W s E i-IN labeling

the edges with distinct positive integers. Consider the following well know,,1

greedy algorithm for constructing a minimum (weight) spanning forest of G:

Input graph G = (V,E) and edge weighting W.

[1] sort the edges E = [ei,...,eMI so that w(e i) <W(e i+I) for
i ii

[2] SFP-B

[3] for i = to m do

if SF {e.} contains no cycles then SF 4-SF U {e.}

Return (v,sk).

Note that the minimum spanning forest output by this algorithm is mnique

for a fixed W (even though in general there may exist many spanning

forests of a given graph).

Let SPANNING-EDGE(G,We) be true if e .SF and false otherwise.

THEOREM 5.5. SPANNING-EDGE is complete in H CSYMLOG

Proof. Let e - {u,v} be an edge of G - (V,E) and let G. =

(V,{e' EEIW(e') < W(e)). Then SPANNING-EDGE(GW,a) 4- *nUGAP(GeUv). The

result then follows from Corollary 5.3. 0

__ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ - -. -
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5.5. Other Graph Recognition Problems Contained in IT1CSYMLOG

Here we note that the recognition problems for many interesting and

commonly found classes of graphs (including chordal graphs, comparability

graphs, interval graphs, split graphs, and permutation graphs) are contained

in TI1ASYMLOG. Our proofs use known characterization Lemmas.

Let G - (V,E) be an undirected graph. Let its ompZeene be I-(V, ,{u,v}

Eju,vEVI). We define here some graphs commonly found in the literature.

Each has a characterization Lemma which immediately implies by Corollary 5.3

its recognition problem is in ICSYMLOG (by a deterministic logspace reduc-

tion to the complement of the UGAP problem). G is a ohordaZ graph if every

cycle C of length >3 contains a chord (an edge connecting two nonconsecu-

tive vertices of C).

LEMMA 5.2. G is chordal iff for every vertex vE V and cycle C

of length >3, if C contains v then C has a chord {x,y} such that both

x and y are of distance -<2 from v.

Proof. Repeatedly apply the chozdal graph definition. o

G is a comparabiZity graph if its edges may be transitively directed.

LEMMA 5.3. (Gilmwore and Hoffman, 64] G is a comparability graph iff

for every cycle C of G, if {x,y} 1 E for every pair of vertices x, y of

distance 2 in C, then C has an even number of edges.

G is an i!'n2;.oa;' gqraph if its vertices can be put into 1 - 1 correspon-

dence with a set of intervals on the real line, such that two vertices are

connected by an edge of G iff their correspondinq intervals have nonempty t
intersection.

77Z~ -7W %pp
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LEMMA 5.4. [Gilmore and Hoffman, 641 G is an interval graph iff

G is a chordal graph and G is a comparability graph.

G is a split graph if its vertex set V can be partitioned into sets

Vl, V2 such that E(V1 ) 0 and (V2 E(V2)) is a complete graph.

i I

LEMMA S.5. [Foldes and flammer, 1977] G is a split graph iff G and

Gare chordal graphs.

G = (V,E) is a permutation graph if V a {v,.. ,#vn) and there is a permutation

a of { n...,n} such that {vitv}E E iff (i-j) (a' (i) -a(j)) <0.

LEMMA 5.6. (Pntueli, Lempel, and Even, 71] G is a permutation graph

iff both G and G are comparability graphs.

By the above Lemmas and Corollary 5.3,

THEOREM 5.7-11. The recognition problem for each of the graph classesz

chordal graphs, comparability graphs, interval graphs, split graphs, permuta-

tion graphs are in 11CSYMLOG.

G is bip•rtite if the vertex set V may be partitioned into disjoint

sets V1 . V2 such that Ea {fu,vJIuEVl,VEV2}.

LEMMA 5.7. G is bipartite iff G has no cycle of odd length.

By using this characterization Lemma, [Jones, Lien, and Laaser, 76]

show the recognition problem for nonbipartite graphs is :log equivalent

to the complement of UGAP. Thus, by Corollary 5.3,

1* -.
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THEOIREM 5.12. The bipartite graph recognition problem is complete in

flc SYMLOG.

Also, (Jones, Lien, and Laaser, 76] give restricted cases of the NP-

complete problems CHROMATIC NUMBER# CLIQUE COVER, EXACT COVER, HITTING SET,

and show their restricted problems are < equivalent to UGAP, and thus

complete in NSYMLOG

5.6 Valence 3 Planarity Testing is in HT 3CSYMLOG

5.6.a. Embedding Rotations

Let G- (V,E) be a undirected graph with vertex set V and undirected

edge set E C {{uv}Idistinct u, vEV). Let D(E) {(uv)I uvIEE U

{(vu)l{u,v}E E} be the set obtained by directing edges of E. Following

(Edmonds, 60] (also see (White, 73]) we define an embedding onto an oriented

surface purely combinatorially; let an embeddi.g rota•tion be a set

o- {v IVE V} where ev is a cyclic permutation of the directed edges Dv(E) u

" {(x,y) ED(E)Ix-v} of D(E) departing from vertex v. Intuitively, 0V

gives the clockwise rotation of edges as they are embedded around

vertex v, in a graph with a planar embedding.

Let R(0) CD(F.) XD(E) be the relation such that e- R(0)e 2  iff

directed edge eI departs from the same vertex v that directed edge

e2 departs from, and e 2 appears immediately after e1  in 6v (where

e is the reverse of edge el). See Figure 1.

1I
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R(O) • u,

I

NB• , ReB

R(G V

0'- 2 e2

b , R(e \ uR

I,. ,

Figure 1.

R(6) is easily shown to be partitioned into a set of cyclic permutations.

Let c be the number of 1-connected components of G. Let X(e) be the

number of orbits of R(O). By Euler's formula, tht embedding rotation 8

is planar if X(O) - IEI + IVi =2c. Intuitively, if 8 is planar and c= 1

then the orbits of R(8) are in 1-1 correspondence with the connected

regions of the embedding, with the borders of the regions oriented counter-

clockwise. If 6 is planar and c;1, then c orbits of R will be

associated with the exterior regions of the embedding.

By Edmonds' [60] characterization, the graph G is planar iff it has

a planar embedding rotation.

5.6.b. The Basis Cycles

Let us impose an arbitrary, fixed numbering of the edges E from

it..., IEI. We consider this numbering to be an edge weighting of the

2-connected graph G -(V,E). The greedy algorithm of Section 5.4 constructs

a unique minimum spanning forest (V,SF . For each directed edge (uv),

Pam
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where (u,v}E E- SFG, there is a unique directed simple cycle C(u'v)

containing (uv) and directed edges derived from SFr. We call C a
(udY)

baeio cycle. Let T be the set of all basis cycles. By applying

Theorem 5.5 we have:

LEMMA 5.8. HICSYMLOG contains the teat: Is edge sequence C in T?

5.6.c. The Bridges of G

Let C be a basis cycle in V of graph G- (V,E). Let a bridge of

C be a maximal edge set BCE- {{u,v}I (uv) EC} such that Vel e2 EB,

there is a path p in B containing both eI and e2, but visiting

vertices of C only at the endpoints of p. Given C, we can construct in
deterministic log-space a graph (this graph is derived from G by substituting

a distinct new vertex v and edge {u,ve} for each edge e -{u,v} of E

such that a vertex v appears in C) whose 1-connected components are in 1-1

correspondence with the bridges of C. Thus, by Lemma 5.8 and Corollary 5.4,

LEMMA 5.9. The bridges of all the cycles of the basic V may be

recognized in E 2CSYMLOG.

5.6.d. Embedding Formulas for Graphs of Valence 3

Suppose we have an oracle for E2CSYMLOG. Given this oracle, we

p•rovide a deterministic log space construction of a CNF'D formula FG

which will encode embedding rotations of graph G- (V,E) of valence 3.

For each vertex vEV and directed edges e, e2, e3 EDv(E)

departing from v, we have a distinct boolean variable 0 (e
v 1 e21e3

Let hI be the CNF% formula:



A (O) (e,,e2 ,e 3 ) e Ov(e 3 ,e 2 ,el)) A (0 (ee2e •P (e2 el))vEV23)()O 32 2'32e
e , 1'2, e 3EDv (E)

Note that h holds just for truth assignments to 0v where there exists

an embedding rotation 6= {e vvEV} where VvEV and el,e 2,e 3 D (E)

departing from v, 0 (ele 2 ,e 3 ) = true iff e2  is cyclically ordered

between eI and e3 in e.

Also, for each undirected edge e E E and basis cycle C EV not containing

e, we have a boolean variable OUT(C,e). (Intuitively, this variable will be true

iff e is embedded into the exterior of the closed region of the sphere defined by C.)

Let h2 be the CNFG formula:

A 00 ((v,u,) (v,u2) (v,u3 OUT(C,{v,u,3

(ul,v), (v,u 2 )EC

[v,u 3 }EE

distinct v,uI, u2 ,u 3EV

Note that hA A h2 holds just when an embedding rotation e induced

such that for each v E V and basis cycle CE% containing vertex v, if

(u1 ,v), (vu 2 ) are directed edges of C and {v,u3} is any other edge

containing v, then {v,u 3} is embedded to the exterior of the region defined

by C if 6v cyclically orders (v,u 2) between (v,uI) and (v,u 3 ) (see

Figure 2.)
UF

F igure 2. U"* Ov " up
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By Lemma 5.8, h 2 can be constructed in deterministic log-space, given a

ICSYMLOG oracle. Finally, let h3 be the formula

A OUT(C,e 1 ) e j OUT (Ce 2 )
CECW

e, e2 EE

elve 2 are in the

same bridge of C

Note that h holds just when for each bridge B of any cycle CEW,
3

either all edges of B are embedded interior to the region defined by C, or all

edges of B are embedded exterior to the region defined by C. By Lemmas 5.8

and 5.9, h3 may be constructed in deterministic log-space, given an

oracle for Z 2CSYMLOG.

Let HG =h 1 Ah 2 Ah 3 .

LEMMA 5.10. A graph G of valence 3 is planar iff HG is satisfiable.

Proof. Suppose G is planar. Then by Edmond's characterization, G

has some planar embedding orientation 6. We use 0 to define the truth

values for the Ov and OUT variables. They clearly satisfy hl, h2 #

and h 3. Thus we can satisfy HG.

On the other hind, su-Dosc H. is .oatisfinble. Let 8 be the

embedding rotation induced by the Ov variables. Let X(8) be the number

of orbits of R(6). Now we must show X(6) - IEI + Ivi = 2 implying by Euler's

formula 0 is planar. Fix the spanning forest SF=SFG. Suppose we delete

G
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an edge e EE-SF from G, so that the resulting graph is G' (V,E') with

El =E- {e. We claim that if 0' i•. the resulting embedding rotation, then

X(E) -IEl + Jvj -IE'I + Ivl. Clearly JE'I = lE- -1 so we must show

Let e--{u,v} be the undirected edge to be deleted from E-SF. Let

j •i,72be the orbits of R(e) containing directed edges dI =(u,v),

d2- (v,u) respectively, so dI= d and d =d We claim now that
2 1 2 2 V

For each iE f1,2}, let Cd E V be the unique basis cycle which

contains directed edge d.. If Ti is a cyclic permutation of Cd then

C d. and 7 do not contain the reverse edge di, so TI72.

otherwise, for each i = 1,2 let (xiYi be the first edge of f.

following di such that (xiyi) is not in Cd. Let fi be the

directed edge of ?.T. immediately preceding .(xi,Yi). By definition of

orbits, (xi,yi) immediately follows f7 in 0 . Note also that f.

must be a directed edge in Cdi. Let g. be the directed edge of Cd.

immediately following fi" Then (xiyi) is cyclicly ordered between

fi and gi in 0e. Since h2  is satisfied, OUT(Cd. I{x iyi}) -false
3.1

for i= 1,2. But since C is the reverse of directed cycle Cd g
a2 1

appears just before f in Cd and so OUT(C ,{x 2 ,y 2 }) = true.

However, we claim OUT(Cd,{x,y})) false for all {x,ylE E such

that (x,y) is contained in 7i but not Cd. This has already been
d

proved for x- x1  and y= yl" For any subsequence V' of it1 contained

on only a single bridge of Cd , since h is satisfied we have

OUT(Cdl,{X,y})-OUT(C ,(x',y'}) for all (x,y) and (x',y') in IT'.
d {i Y) O(d 1  1XYl

Also, if (x,y)l"(x',y') is a subsequence of it where V" is a

______ ______
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is a subsequence of C but (x,y) and (xl,y') do not appear in Cd
d1d

then since h is satisfied we have OUT(C d,{x,y})- OUT(Cdl,{X',y'}).

If (x 2 ,Y2) is in 7r•, then we have just shown OUT(Cd ,{x 2,y 2 }) = false,

contradicting our previous proof then OUT(Cd, {x2,y2}) = true. Hence

(x2 ,Y2 ) is not in n 1 but is by assumption in r2, so 71 #2.

Without loss of generality, let it d 7rI' and it= d i2' where
1 1 2 22

neither nr nor wT' contain di or d Hence when e is deleted from

E- SF, the orbits T1 and Tr2 of R(e) are merged into a single new orbit

T'l2 of R(e'), and no other orbits are modified.

Thus X(0') =X(6) -1, and we have shown X(8) - IEI + IvI remains

invariant. We repeat this process (deleting edges not in SF) until we

have only E' -SF. Let c be the number of maximal trees in the spanning

forest SF, c is also a number of 1-connected components of SF. Then

X(e') =c, ISFI =n-c and IVi =n. Hence our invariant is X(O) - IEI 4 lVI =

X(6') - ISFI + IVI = 2c, which implies by Euler's formula the embedding

orientation 0 is planar. Thus, by Edmonds characterization, G is

planar. 0

We have by applying Theorem 5.2 and Lemma 5.10,

THEOREM 5.13. Planarity testing of valence 3 graphs is in H CSYMLOG.

3

!4
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6. CONCLUSION

It may be significant that the symmetric complementing machine

introduced in this paper has applications to many combinatorial problems

found in practice, such as spanning trees, k-connectivity and planarity

testing. In this case the theoretical study of a new machine type led us

to the discovery of new techniques for practical combinatorial algorithm

design. For example, applying our probabilistic decision algorithm for

symmetric games to our proof that valence 3 planarity testing is in R 3CSYMLOG,
37

yields a new probabilistic algorithm for planarity testing; this algorithm

has a quite different structure than any previously known deterministic

planarity testing algorithm such as that of [Hopcroft and Tarjan, 74].

This indicates to us that the field of combinatorial algorithms, as well

as the field of abstract computational complexity would benefit by further

study of unusual machine types and their decision algorithms.

Preliminary Work and Acknowledgments

In a preliminary draft of this paper, we itilized a restricted type of

alternating machine whose nonalternation next moves are a symmetric

relation. Dexter Kozen pointed out to us that such symmetric alternation

machines are too restricted for our intended applications (in particular,

thy do not satisfy a complementation property such as Proposition 2.1).

A succeeding draft of this paper generalized this machine to allow

nonalternation moves to be essentially a cross-product of a symmetric and

a deterministic relation. Joe Halpern informed us of certain difficulties

of this generalization.
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The symmetric complementing machine described in this current draft

satisfies the required complementation property of Proposition 2.1 and

also has efficient decision algorithms if the machine is both space and

complementation bounded. Michael Sipser has also suggested an equivalent

machine; this is a symmetric alternating machine M as we originally

defined (with symmetric nonalternation moves), but with a modified

definition of acceptance:

M accepts (rejects, respectively) from an existential (universal,

respectively) configuration I if there exists a finite computation sequence

I=I1 .... Ij I where Il,...,Ij-1 are existential (universal,

respectively) and I contains an accepting (rejecting, respectively) state

or I is universal (existential, respectively) and M accepts (rejects,

respectively) from I... Also, M rejects (accepts, respectively) from

existential (universal, respectively) configuration I iff M does not

accept (does not reject) from I. Thus Sipser's definitions for acceptance

and rejection of these machines are duals. This is the same as the standard

definition of acceptance of an alternating machine from an existential

configuration, but differs from the standard definition of acceptance from

a universal configuration so as to allow for complementations of languages.

The author wishes to thank Larry Denenberg, Vassos Hadzilacos, Joe

Halpern, Harry Lewis, A. Prasad, Michael Sipser, and Paul Spirakis for a

careful reading and many useful comnents on preliminary drafts of this paper.
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